A Transitive Recommendation System for Information Technology Communities

نویسندگان

  • Waleed M. Al-Adrousy
  • Hesham A. Ali
  • Taher T. Hamza
چکیده

Social networks have become a new trend for research among computer scientist around the world. Social network had an impact on users' way of life. One of social network usages is recommendation systems. The need of recommendation systems is arising when users try to know best choice for them in many items types (books, experts, locations, technologies, etc.). The problem is that a single person can't try all alternatives in all possibilities life goals to compare. Thus, a person has to use his friends' expertise to select better option in any item category. This process is the main idea of “Recommendation Systems”. Recommendation systems usually depend on users-to-items ratings in a network (graph). Two main challenges for recommendation systems are accuracy of recommendation and computation size. The main objective of this paper is to introduce a suggested technique for transitive recommendation system based on users' collaborative ratings, and also to balance loading of computation. All this has to be applied on a special type of social network. Our work studied the transitivity usage in connections to get a relation (path) as a recommendation for nodes not directly connected. The target social network has eight types of nodes. So, there are techniques that are not suitable to this complex type of network. Those we can present a new support for recommending items of several types to users with several types. We believe that this functionality hasn't been fully provided elsewhere. We have suggested using single source shortest path algorithm combined with Map Reduce technique, and mathematically deduced that we have a speeding up of algorithm by 10% approximately. Our testing results shows an accuracy of 89% and false rejection of 99% compared to traditional algorithms with less configuration parameters and more steady count of recommendations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Design and implementation of a WEBGIS-based recommendation system based on context-awareness for tourism planning

Today, tourism is one of the most lucrative industries in the world. Due to the large amount of information that exists about the points of Interest (POI) of a city, the tourist is faced with an overload of information. As a result, a recommending system is needed to recommend suitable tourist places to the tourist in the shortest time. In order to offer a better offer, the interests and contex...

متن کامل

The Feasibility Study of Launching Book Recommendation System on the Basis of a Lending and Selling System of e-Books and Digital Taktab

Background:The study was conducted to achieve three axes of goals (users, publishers and the system) by way of objectives related to: A) Users - measuring the level of their satisfaction with Taktab system and also use of various methods of data retrieval;  B) Publishers - Measuring the level of their satisfaction with Taktab system and also their expectations of the existence of a recommending...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)

With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015